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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background
Stochastic-PDEs

Most Engineering problems Can be framed as mathematical modeling
challenges

PDEs that lack analytical solutions
Numerical methods to the rescue

Stochastic Hamilton-Jacobi Equations are applied to:
Optimal control for robotics and autonomous systems
Financial modeling under uncertainty
Enhancing reinforcement learning and neural networks
Modeling biological oscillators and dynamics under stochastic
influence

Finance Path Planning Reinforcement
Learning

Biological
Systems
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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background
Parkinson’s Disease

Hypothesis
Pathological synchronization of neuronal activity is linked to neurological
disorders like Parkinson’s disease, essential tremor, and epilepsy.

Idea:
Modulate this synchronization is key for effective treatments like Deep
Brain Stimulation (DBS).

Challenges:
Diminishing efficacy over time
Stimulation-induced side effects
High energy consumption
Static parameters vs. dynamic symptoms
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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background
Advances in Control Theory for DBS

Control theory addresses DBS limitations like diminishing efficacy and
side effects.
Closed-loop feedback systems adjust stimulation based on real-time
signals, improving symptom control.
Adaptive DBS (aDBS) personalizes treatment by modulating
stimulation in response to symptom fluctuations.
Model Predictive Control (MPC) and Reinforcement Learning (RL)
optimize stimulation, improving energy efficiency and therapeutic
efficacy.
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Optimal Control for Stochastic Neural Oscillators Optimal Control Approach

Proposed Approach
Stochastic HJB for Desynchronization

Our Approach:
Event-based optimal control based on phase resetting technique to
desynchronize neurons, incorporating stochastic elements to manage
neural fluctuations.

Designs optimal control based on the stochastic
Hamilton-Jacobi-Bellman (HJB) Equation
Extends Nabi et al.’s optimal control strategy, integrating randomness
in neural dynamics
Uses BSDEs and viscosity solutions for robust optimization.
Event-based control strategy
Computational framework is adaptable to other stochastic control
problems.

A. Nabi, M. Mirzadeh, F. Gibou, and J. Moehlis. Minimum energy desynchronizing control for coupled neurons.

Journal of Computational Neuroscience, 34:259–271, 2013
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview
Neuronal Dynamics and Control

Reduced 2D Hodgkin-Huxley Model
The neuronal model is described by:

V̇i = fV (Vi, ni) + ηi(t) +
1

N

N∑

j=1

αij(Vj − Vi) + u(t),

ṅi = fn(Vi, ni).

i = 1, . . . , N : Index of neurons in a network of N neurons.
u(t): Control input applied uniformly to the network.
Vi, ni: Membrane voltage and gating variable of neuron i.
fV , fn: Dynamics in the absence of noise, coupling, or control.
ηi(t): Gaussian white noise,

√
2DN (0, 1), modeling neurons intrinsic

noise.
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview
State-space Diagram for Deterministic System
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Figure: State-space diagram and control for the deterministic system

A. Nabi, M. Mirzadeh, F. Gibou, and J. Moehlis. Minimum energy desynchronizing control for coupled neurons.

Journal of Computational Neuroscience, 34:259–271, 2013
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview
State-space Diagram for Stochastic System
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Figure: State space diagram for D = 15 without control input
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Optimal Control for Stochastic Neural Oscillators Optimization Problem

Optimization Problem
Control Objective

Control Objective:
Find the energy-optimal control law to steer the system to (Vpl, npl) within
time [0, Tend] while minimizing the following cost function:

Cost Function

J(z, u(t)) =

∫ Tend

0

u2(t) dt+ γq(z(Tend)),

where:
u(t): Control input, bounded by |u| ≤ umax.
γq(z(Tend)): Penalizes the deviation from the desired final state,
representing the final-time penalty for being far from the phaseless
set.
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Optimal Control for Stochastic Neural Oscillators Optimization Problem

Optimization Problem
Hamilton-Jacobi-Bellman Equation

The stochastic cost-to-go function, V(z, τ), represents the minimum
expected cost to reach the target state while satisfying control constraints:

Cost-to-Go Function

V(z, τ) = min
u(·)

E

[∫ Tf

τ

u2(t) dt+ γq(z(Tf ))

]
,

subject to the control constraint |u(t)| ≤ umax.

This function satisfies the stochastic Hamilton-Jacobi-Bellman equation:

−∂V
∂τ

= min
|u|≤umax

H(z,∇V) +D∆V,

where:
H(z,∇V) is the deterministic Hamiltonian.
D∆V represents the diffusion term, with ∆ being the Laplacian
operator.
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Optimal Control for Stochastic Neural Oscillators Optimization Problem

Optimization Problem
Hamiltonian and Optimal Control

Hamiltonian
The Hamiltonian governing the system is given by:

H(z,∇V, u) = u2 +∇V(z(t), t) (F (z(t)) +Bu(t)) ,

where F (z(t)) and B represent the system dynamics and control input
coefficients, respectively.

The optimal control law is derived from the Hamiltonian and is given by:

u∗(t) =

{
− 1

2KVx |Vx| ≤ 2Kumax

−sign(Vx)umax |Vx| > 2Kumax

where Vx = ∂V
∂x .
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Stochastic HJB Equation

To solve the optimal control problem, we address the stochastic HJB
equation:

Stochastic HJB Equation

∂V
∂t

+ min
|u|≤umax

H(z,∇V, u) + D

K2

∂2V
∂x2

= 0,

with a terminal cost defined as:

Terminal Condition

V(z(Tend), Tend) = γ

(
1− e

−
(

(x−xpl)
2

σ2
x

+
(y−ypl)

2

σ2
y

))
,

Key considerations:
The problem is a terminal value problem provided by the end-point
cost V(z(Tend), Tend).
The equation must be solved backward in time from Tend to t = 0.
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Convergence Criteria for BSPDEs

Theorem (Barles-Souganidis Framework)
For a Backward Stochastic Partial Differential Equation (BSPDE), numerical
methods must satisfy the following properties to guarantee convergence to the
viscosity solution:

1 Monotonicity: Ensures a discrete maximum principle, preventing
instability.

2 Consistency: The numerical method must accurately approximate the
BSPDE as the grid spacing tends to zero.

3 Stability: Maintains bounded numerical solutions over time.
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Proposed Method

We employ Hamilton-Jacobi (HJ) solvers leveraging advanced numerical
techniques.

First-order Term:
Weighted Essentially Non-Oscillatory (WENO) for ∇V
Local Lax-Friedrichs (LLF) for numerical Hamiltonian (Ĥ) which is
needed for nonlinear H

Second-order Term:
Backward Time Central Space (BTCS) for ∇2V

Time Integration:
Total Variation Diminishing Runge-Kutta (TVD-RK) for time integration
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Sequential Operator Splitting Method

Operator Splitting Concept: For a differential equation where the local
time derivative equals the sum of several operators, the operator splitting
method allows us to treat each spatial operator separately, solving each
corresponding sub-problem individually.

Abstract Cauchy Problem
Consider the Cauchy problem on Banach space X:

{
d
dtu(t) = (A+B)u(t), t > 0

u(0) = u0

where A, B are densely defined, linear, closed operators with D(A) ∩D(B)
dense in X
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Sequential Operator Splitting Method

Sub-Problem Structure
For t ∈ [(k − 1)h, kh] with k ∈ N and uspl,h(0) = u0, solve:

d

dt
uA(t) = AuA(t), uA((k − 1)h) = uspl,h((k − 1)h)

d

dt
uB(t) = BuB(t), uB((k − 1)h) = uA(kh)

Set uspl,h(kh) = uB(kh)

Split Solution Form
The numerical solution takes the form:

uspl,h(t) = (F (h))nu0

for all u0 ∈ D and n ∈ N with h = t
n
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Sequential Operator Splitting Method

IMEX Methods: Suitable combinations of implicit and explicit schemes for
PDEs with terms of different nature.

PDE Setting
Start with PDE: {

ut(x, t) = f(x, u(x, t))

u(x, 0) = u0(x)

Split into f = f1 + f2, yielding system d
dtU = F1U + F2U

Numerical Approximations
For each equation ut = fk(u), k = 1, 2:

Explicit Euler: un+1 = ψe
k(u

n) ≡ un + hfk(u
n)

Implicit Euler: un+1 = ψi
k(u

n) ≡ un + hfk(u
n+1)
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Application to PDEs
IMEX Implementation

Semi-Discrete System
After splitting f = f1 + f2:

f1: diffusion term (requires implicit treatment)
f2: nonlinear term (suitable for explicit integration)

Examples: convection-diffusion, reaction-diffusion problems

IMEX Scheme
Linear one-step scheme combining methods:

un+1 = φh
3 (u

n) = ψi
1 ◦ ψe

2(u
n) = un + h(f1(u

n+1) + f2(u
n))

For convergence analysis, see Ascher et al. (1997)
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Algorithm Overview

Algorithm Steps
1 Initialize with the terminal cost V(z, Tend)
2 Solve the Hamiltonian term:

Compute gradients using WENO scheme
Evaluate the Hamiltonian with LLF method
Output is V∗(z, Tend −∆t)

3 Solve the diffusion term:
Use the computed V∗(z, Tend −∆t)
Apply BTCS implicit scheme
Output is V(z, Tend −∆t)

4 Time integration stage:
Repeat steps 2 and 3 for each stage of the TVDRK

5 Repeat steps 2, 3 and 4 until t = 0
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Model Setup

Single Neuron Model
After computing the value function, we integrate the stochastic ODE:

V̇ = fV (V, n) + η(t) + u(t)

ṅ = fn(V, n)

where noise term η(t) =
√
2DN (0, 1)

Simulation Parameters
Time horizon: Tend = 7 ms
Spatial grid: 320× 320 uniform grid
Control bound: umax = 10 µA/µF
Honeycutt’s second-order method for SDE integration
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Model Setup

Single Neuron Model
After computing the value function, we integrate the stochastic ODE:

V̇ = fV (V, n) + η(t) + u(t)

ṅ = fn(V, n)

where noise term η(t) =
√
2DN (0, 1)

Simulation Parameters:
Time horizon: Tend = 7 ms
Spatial grid: 320× 320 uniform grid
Control bound: umax = 10 µA/µF
SDE Integration: Honeycutt’s second-order method
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Optimal Control Computation

Control Computation Strategies:

u∗(t):
Stochastic value function on stochastic trajectories
Energy-optimal for specific noise realization

ũ∗(t):
Stochastic value function on deterministic trajectories
Approximates ensemble average behavior

u∗0(t):
Deterministic value function on stochastic trajectories
Applies noise-free control to noisy system

u∗d(t):
Deterministic value function on deterministic trajectories
Classical approach (Nabi et al., 2013)
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level
Effects of Noise on System Dynamics

Figure: Cost-to-go function V for various noise levels D. For small D, V is steeper
and approaches zero, while as D increases, V rises with a less steep slope,
indicating noise influence on the dynamics
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level
Effects of Noise on System Dynamics

Figure: Optimal control input u∗ for various noise levels D. The control input
becomes more pronounced as D increases, reflecting system dynamics under
varying noise.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level
Single Realization of Noise

Figure: Stochastic control inputs and stochastic trajectories
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level
Stochastic Value Function on Deterministic Trajectories

Figure: Control inputs derived from the stochastic value function on deterministic
trajectories.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level
Comparison of Energy Consumption Across Different Noise Levels

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure: Control inputs and energy consumption with expected value integrals,
E[
∫
u2(t)], based on 10,000 Monte Carlo simulations.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Population Level

Figure: Stochastic control for D = 15.0, α = 0.25, N = 100 neurons: (top) without
control, (second) with control, (third) input, (bottom) spike raster.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Population Level
Realizations for D = 15, αij = 0.25

∫ [ũ
∗ (
t)
]2
d
t

∫ [u
∗ d
(t
)]
2
d
t

Figure: Individual realizations and mean trajectories for stochastic (top) and
deterministic (bottom) optimal control at D = 15.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Population Level
Cumulative Energy Expenditure Comparison
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Figure: Cumulative energy expenditure for deterministic (blue) and stochastic (red)
control across different noise intensities D and coupling strengths α.
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Robustness to Network Properties
Energy Distribution for Control Strategies

u∗
d(t) u∗

d(t) u∗
d(t)

u∗
d(t) u∗

d(t)

Figure: Accumulated energy expenditure for deterministic (blue) and stochastic
(red) control across different noise levels D and coupling strengths α. The boxes
show the distribution of

∫ 425

0
[u∗(t)]2dt for 100 noise realizations.
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Robustness to Network Properties
Neural Network Behavior Under Varying Coupling Strength

Figure: Network behavior with active event-based control for D = 10 and N = 100
neurons. Panels show different coupling strength conditions: (1) uniform α = 0.20,
(2) random distribution, and (3) 20% zeroed coupling strengths. Dotted gray traces
represent mean voltage, with control activation indicated by horizontal dotted
lines.
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Optimal Control for Stochastic Neural Oscillators Robustness to Network Properties

Robustness to Network Properties
Cumulative Energy Expenditure
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Figure: Energy expenditure across coupling scenarios and noise levels. Plots show∫
[u∗(t)]2dt averaged over 100 realizations for varying D and ᾱ. Blue:

Homogeneous; green: Heterogeneous; red: Sparse Heterogeneous
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Robustness to Network Properties
Robustness of Control Duration Across Coupling Scenarios
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Figure: Control duration distribution across coupling scenarios and noise levels.
Plot shows control time durations over 100 realizations for varying D and ᾱ. Blue:
Homogeneous; green: Heterogeneous; red: Sparse Heterogeneous
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Robustness to Network Properties
Control Duration Across Coupling Scenarios

Homogeneous Heterogeneous Sparse Heterogeneous
(D, ᾱ) E[

∫
ũ2(t)dt] Control E[

∫
ũ2(t)dt] Control E[

∫
ũ2(t)dt] Control

Time (ms) Time (ms) Time (ms)
(0.5, 0.05) 752.97 28.35 729.17 27.54 546.85 20.58
(1.0, 0.10) 1540.44 58.00 1548.44 58.26 1048.92 39.52
(5.0, 0.15) 1895.18 77.64 1918.11 78.78 754.88 30.94
(10.0, 0.20) 2636.17 126.76 2619.58 125.64 646.08 31.00
(15.0, 0.25) 3815.53 213.98 3813.70 213.66 1012.22 56.52

Table: Energy consumption E[
∫
ũ2(t)dt] and control duration for N = 100 coupled

neurons with event-based control over 425 ms. Network types: Homogeneous,
Heterogeneous, Sparse Heterogeneous. Averaged over 100 noise realizations.
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Conclusion
Summary of Findings and Key Results

Summary of Findings:
Energy-optimal control for phase resetting of stochastic neural
oscillators, generalizing earlier work on deterministic oscillators.
Development of a nonlinear second-order monotone scheme solver
for BSPDEs applied to the stochastic HJB equation using level set
methods.
Event-based feedback control effectively desynchronizes neural
oscillators, activated when voltage exceeds a threshold.

Key Results:
Stochastic control outperforms deterministic methods in energy
efficiency, particularly in high-noise environments.
Achieved energy savings of up to 32% for higher noise levels (D = 15).
Demonstrated robustness to variations in neuronal coupling
strengths, ensuring effectiveness in non-uniform neural networks.
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Conclusion
Implications and Future Directions

Implications and Broader Applications:
Potential to extend battery life of DBS devices for Parkinson’s disease
treatment.
Improved energy efficiency and robustness in heterogeneous neural
networks.
Applicability to other fields, such as robotics, aerospace, and finance.
Revisiting studies on seizure-like bursting and cardiac arrhythmias
with noise integration.

Future Research Directions:
Developing adaptive DBS protocols that account for stochastic neural
dynamics.
Investigating long-term effects on neural plasticity and network
reorganization.
Conducting comparative clinical studies to validate real-world
benefits of stochastic control strategies.
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Optimal Control for Stochastic Neural Oscillators Ongoing and Future Work

Ongoing and Future Work
Proposed Research Directions

Proposed Research Directions:

Preparing an in-proceedings paper for the Journal of Computer Physics
Communications, featuring a software manual for a 2D nonlinear PDE
solver. This solver addresses a variety of deterministic and stochastic
Hamilton-Jacobi equations and aims to serve the broader research
community.
Developing a machine learning-based, data-driven approach for
adaptive Deep Brain Stimulation (DBS) to enhance therapeutic
outcomes in neurological disorders.
Expanding the software package to solve higher-dimensional
Hamilton-Jacobi equations, up to 4D, with robust capabilities for both
stochastic and deterministic cases.
Modeling a 4D coupled neuron system to explore complex neural
dynamics under stochastic influences and their control mechanisms.
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Connecting the Dots
From Neural Oscillators to Protein Aggregation

Previous Work: Stochastic PDEs
Focus on nonlinear optimization and control
Developed robust numerical methods
Solved complex stochastic equations
Fixed computational domains

New Challenge: Free Boundary Problem
Moving boundaries (protein aggregates)
Level-set representation
Multi-scale physics
Complex geometries
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Building on Our Foundation
Our computational expertise in:

Numerical methods for nonlinear PDEs
High-performance computing
Multi-scale modeling

provides the perfect foundation for tackling free boundary problems in
protein aggregation.
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Protein Aggregation
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Motivation and Background
Protein Aggregation in Biotherapeutics

Protein-based Therapeutics
Monoclonal antibodies (mAb) are a major class of biotherapeutics.
Challenges arise at high concentrations:

Multi-body interactions and crowding effects
Increased viscosity and instability
Conformational and colloidal instability

Stable high-concentration formulations are crucial for improving
efficacy and patient outcomes.

Understanding Aggregation and Morphology
Protein aggregation accelerates at high concentrations, leading to:

Irreversible aggregation, limiting shelf life
Increased viscosity complicating formulation and drug delivery
Immune responses due to high molecular weight aggregates

Understanding the aggregation-morphology relationship is key to
predicting long-term stability.
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Protein Aggregation
Computational Models

Why Computational Models?
They are advantageous for the early development of biotherapeutics.

Limited material availability
Need to explore many formulation conditions

Main Challenge?
Long-term stability prediction arising in high concentration
formulations
Multi-scale nature of aggregation:

Spatial scales: monomers to large aggregates
Time scales: microseconds to months
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Protein Aggregation
Existing Computational Models

Kinetic Rate Models
Describes protein aggregation
through population balance
equations, tracking the evolution
of mass fractions over time.
Key Features:

Rate equations for:
Nucleation
Growth
Condensation

Statistical averaging of bulk
properties
Efficient for long timescales

Molecular Dynamics
Simulates protein aggregation by
solving Newton’s equations of
motion for individual particles at
atomic resolution.
Key Features:

Force fields include:
Bonded interactions
Non-bonded forces
Solvent effects

Detailed molecular
trajectories
Limited to short timescales
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Motivation and Bacground
Limitations of Existing Computational Models

Kinetic Models
Advantages:

Long timescale
coverage
Large systems
Computationally
efficient

Limitations:
Lack spatial
resolution
Miss
morphological
details
No local
interactions

Our Approach
Bridging the Two
Models!
Key Features:

Multi-scale
coupling
Level-set
representation
Spatial resolution
Morphological
details
Long-range
physics
Efficient
computation

Molecular Dynamics
Advantages:

High spatial
resolution
Atomic precision
Captures solvent
effects

Limitations:
Limited
timescales
High
computational
cost
Small system
sizes
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Protein Aggregation Protein Aggregation Physics

Protein Aggregation
Protein Aggregation Process

The protein aggregation process has two main phases:
1 Nucleation
2 Growth

Monomer addition
Polymerization
Condensation

These processes are described by rate equations developed by Roberts et
al (2009).

Y. Li and C. J. Roberts. Lumry-eyring nucleated-polymerization model of protein aggregation kinetics. 2. competing growth via condensation and chain polymerization.

The Journal of Physical Chemistry B, 113(19):7020–7032, 2009
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Protein Aggregation
Kinetic Model for Protein Aggregation

The kinetic model describes the following three main components:
1 Monomer fraction (m)

m =
[N ] + [I] + [U ]

C0

C0: Initial monomer concentration.
N : Native monomers.
I: Intermediate state monomers.
U : Unfolded state monomers.

2 Aggregate fraction of size x (ax).
3 Aggregate fraction of larger sizes (ai):

Where x < i < n∗.
n∗: Size at which precipitation occurs (insoluble aggregate).
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Protein Aggregation
Kinetic Model

1. Monomer Depletion
dm

dθ
= −xmx − δβgnm

δσ

−xmx: Nucleation phase.
−δβgnmδσ: Growth phase (monomer addition and polymerization).

2. Formation of Aggregates of Size x

dax
dθ

= mx − βgnaxm
δ − βcgβgnax

(
κx,xax +

n∗−1∑

j=x

κx,jaj
)

mx: Formation due to nucleation.
−βgnaxmδ: Growth phase (monomer addition).
−βcgβgn: Condensation mechanism.

3. Formation of Larger Aggregates (x < i < n∗)

dai
dθ

= βgn(ai−δ − ai)m
δ

− βcgβgnai
(
κi,iai +

n∗−1∑

j=x

κi,jaj
)

+ βcgβgn

i/2∑

j=x

κi−j,jai−jaj

βgn(ai−δ − ai)m
δ: Growth phase (polymerization).

−βcgβgnai: Condensation mechanism (self-interactions).
+βcgβgn

∑i/2
j=x: Condensation mechanism (interactions between

different aggregates).
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Protein Aggregation
Kinetic Model: Understanding κi,j

κi,j represents how easily/quickly aggregates combine

Collision Rates
How often aggregates bump into
each other:

Transport mechanisms
(diffusion)
Inter-molecular interactions

Capture Rates
Likelihood of sticking after collision:

Collision cross section
Binding affinities
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Protein Aggregation
Kinetic Model: Understanding κi,j

Collision Forces
Long-range:

Electrostatic interactions
Hydrodynamic interactions

Short-range:
Van der Waals forces
Brownian motion

Capture Forces
Short-range only:

Hydrogen bonding
Hydrophobic interactions
Binding site interactions
Van der Waals forces
Short-range electrostatic
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Protein Aggregation
Conceptual Schematic

1. Conformational Transition of 
Folding-Competent Monomers


2. Reversible Association of R 
Monomers (Pre-Nucleation)


3. Nucleation including 
Rearrangement from      to
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Figure: (Left) Physical interactions during protein aggregation. (Right) The different
stages of protein aggregation driven by all the physical interactions in the solution
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Continuum Model
The Uniform Density Model for Epitaxy

What is Epitaxial Growth?
Epitaxial growth involves depositing adatoms (diffusing atoms) onto a
substrate, where they diffuse, nucleate, and aggregate to form ordered
atomic layers.

The Uniform Density Model:
Caflisch et al. introduced this model to simulate epitaxial growth, focusing
on the interaction between nucleation, adatom density, and morphology
evolution.

Key Concepts:
Islands form as circular regions and grow until coalescence begins.
Island boundaries evolve based on adatom density p(t) and
deposition coverage.
Steady-state shapes depend on the attachment rate A(θ).
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Continuum Model
The Uniform Density Model for Epitaxy

Figure: Island morphology at various coverages: (a) 10%, (b) 50%, (c) 100%, and (d)
130%.

R. E. Caflisch, M. F. Gyure, N. Papanicolaou, W. E. Prachatka, and D. D. Vvedensky. Kinetic monte carlo simulation of epitaxial growth.

Physical Review E, 59(6):6879–6887, 1999
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Continuum Model
Inspired by the Island Dynamics Model for Epitaxy

Model Relevance:
Our approach is inspired by Caflisch et al.’s Island Dynamics Model (IDM)
for epitaxial growth Caflisch et al. (1999), which simulates island
formation, growth, and coalescence based on adatom density.

Key Insights from IDM:
Models island growth as a free boundary problem.
Bridges microscopic atomic movement and macroscopic elastic
effects.
Influences our modeling of aggregation and morphology evolution.
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Continuum Model
Model Overview

Core Concept: Adding spatial resolution to protein aggregation kinetic
models via a continuum representation of species and to include the
two-way coupling of long and short range interactions through the design
of effective boundary conditions

Level-set Representation ϕ(x, t):
Tracks aggregate boundaries as a free surface problem
Evolves with monomer flux at the surface

Domains:
Ω−: Aggregates
Ω+: Outside aggregates
Γj : Aggregate surface

Density Evolution:
∂ρ

∂t
= ∇ · (D(x)∇ρ)− x

dnx
dt
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Continuum Model
Physical Processes

1. Nucleation:
Stochastic or deterministic nucleation sites.
Rate:

dnx
dt

=

(
τg
τn

) ⟨ρx(t)⟩
⟨ρ(0)⟩x−1

2. Growth Mechanisms:
Surface flux (monomer addition):

D∇ρ · n = −δ ρ
δ − ρδeq

⟨ρ(0)⟩δ−1

Robin boundary condition with surface energy:

∇ρ · n+ αρδ = αρδeq

3. Level-set Evolution:
∂ϕ

∂t
+ v · ∇ϕ =

∑

n

δ(t− tn)δ(x− xn)
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Continuum Model
Multi-Physics Integration

1. Hydrodynamics:
Incompressible Stokes flow equations:

∇ · v = 0

µ∇2v −∇P + ρlf = 0

2. Electrostatics:
Poisson-Boltzmann equation:

∇ · (ϵ∇ψ) = −κ2mezρ− κ2e(z+c+ − z−c−)

3. Coupled Transport:
Species conservation with electrostatics.
Ion transport and surfactant effects on surface tension.
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Continuum Model
Conceptual Schematic

(b)(a)

Figure: Aggregates are represented by a level-set function that evolves according to the
flux of monomers to its interface. Nucleations generate new instances of the level-set
function. Surface affinities and long-range interactions are readily included through
boundary conditions and by solving partial differential equations in irregular domains
under the continuum assumption.
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Preliminary Results
Poisson Equation Solver

Bochkov et al. (2019) solved Poisson-type equations on irregular domains
with Robin boundary conditions using two finite volume schemes.
Consider the PDE on domain Ω ⊆ Rn (n = 2 or 3) with ∂Ω =

⋃N
p=1 Γp, where

Γp are smooth subdomains:

Governing Equation

−∇ ·
(
µ(r)∇u(r)

)
+ k(r)u(r) = f(r)

r: spatial coordinates
µ(r): diffusion coefficient
k(r): reaction coefficient
f(r): source term

D. Bochkov and F. Gibou. Solving poisson-type equations with robin boundary conditions on piecewise smooth interfaces.

Journal of Computational Physics, 376:1156–1198, 2019
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Preliminary Results
Poisson Equation Solver

The boundary conditions on ∂Ω =
⋃N

p=1 Γp are given by:

Boundary Condition

µ(r)
∂u

∂np
+ αp(r)u(r) = gp(r)

where:
p is the subdomain index,
N is the number of smooth C2 subdomains,
αp(r) is the boundary coefficient, and
gp(r) is the boundary function.
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Preliminary Results
Single Protein with Two Patches

We consider a compound domain that is the union of two disks with radii
r2 = 1

2r1.

The test function:



u+ = 2 log

(
(x+ 0.8y)2 + x− 0.7y + 4

)
− 3

u− = 0

We set as µ = 1 and k = 0:

−µ∇2u(r) = 0.

The Robin boundary conditions:

µ
∂u

∂n
+ αu = g, with α =




α1 = 1, on Disk1,

α2 = sin(x+ y) cos(x− y), on Disk2.
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Preliminary Results
All Subplots

Figure: Visualization of the level-set function, numerical and exact solutions, and
error contours for both positive and negative domains. The plot shows how the
solution behaves across the entire domain, with clear separation of regions.
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Preliminary Results
Single Protein with Two Patches

Figure: A comparison of the numerical solution with the exact solution. The
semi-transparent plane interface highlights areas where the numerical solution
approximates the exact solution, particularly near critical regions like
discontinuities or gradients.
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Preliminary Results
Single Protein with Two Patches

Figure: Convergence analysis showing the accuracy of the numerical method as a
function of grid resolution. The plot demonstrates how the error decreases,
reflecting the reliability of the numerical solution as the grid is refined.
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Ongoing and Future Work
Proposed Research Direction

Design and implementation of computational model:
1 Monomer and aggregate evolution modeling, including nucleation.
2 Represent surface affinities through boundary conditions.
3 Incorporate long-range interactions.

Validation:
1 Validate aggregation and cluster size distribution.
2 Validate short-time diffusivity predictions.
3 Validate viscosity measurements.
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