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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background

Stochastic-PDEs

Most Engineering problems Can be framed as mathematical modeling
challenges
PDEs that lack analytical solutions
Numerical methods to the rescue

Stochastic Hamilton-Jacobi Equations are applied to:
@ Optimal control for robotics and autonomous systems
@ Financial modeling under uncertainty
@ Enhancing reinforcement learning and neural networks
@ Modeling biological oscillators and dynamics under stochastic
influence

)

Finance Path Planning Reinforcement Biological
Learning Systems
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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background

Parkinson’s Disease

Pathological synchronization of neuronal activity is linked to neurological
disorders like Parkinson’s disease, essential tremor, and epilepsy.

Idea:
Modulate this synchronization is key for effective treatments like Deep
Brain Stimulation (DBS).

Challenges:
@ Diminishing efficacy over time
@ Stimulation-induced side effects
@ High energy consumption
@ Static parameters vs. dynamic symptoms
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Optimal Control for Stochastic Neural Oscillators Motivation and Background

Motivation and Background

Advances in Control Theory for DBS

@ Control theory addresses DBS limitations like diminishing efficacy and
side effects.

@ Closed-loop feedback systems adjust stimulation based on real-time
signals, improving symptom control.

@ Adaptive DBS (aDBS) personalizes treatment by modulating
stimulation in response to symptom fluctuations.

@ Model Predictive Control (MPC) and Reinforcement Learning (RL)
optimize stimulation, improving energy efficiency and therapeutic
efficacy.
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Optimal Control for Stochastic Neural Oscillators Optimal Control Approach

Proposed Approach

Stochastic HJB for Desynchronization

Our Approach:

Event-based optimal control based on phase resetting technique to
desynchronize neurons, incorporating stochastic elements to manage
neural fluctuations.

@ Designs optimal control based on the stochastic
Hamilton-Jacobi-Bellman (HJB) Equation

@ Extends Nabi et al.'s optimal control strategy, integrating randomness
in neural dynamics

@ Uses BSDEs and viscosity solutions for robust optimization.

@ Event-based control strategy

@ Computational framework is adaptable to other stochastic control
problems.

A. Nabi, M. Mirzadeh, F. Gibou, and J. Moehlis. Minimum energy desynchronizing control for coupled neurons.
Journal of Computational Neuroscience, 34:259-271, 2013
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview

Neuronal Dynamics and Control

Reduced 2D Hodgkin-Huxley Model

The neuronal model is described by:

N
Vi = fu(Vioma) +mlt) + 5 O asy(V; = Vi) + u(t),
j=1

@ :=1,...,N: Index of neurons in a network of N neurons.

@ u(t): Control input applied uniformly to the network.

@ V;,n;: Membrane voltage and gating variable of neuron i.

@ fv, f»: Dynamics in the absence of noise, coupling, or control.

@ 1,(t): Gaussian white noise, v2DN (0, 1), modeling neurons intrinsic
noise.
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview

State-space Diagram for Deterministic System

07 Deterministic Trajectory with Contre) 3
Periodic Orbit E
0.6 Target Point -
S C
05 -
04 LA A L A O L |
-60 -40 -20 0 20 40
V (mV)
[TiJ8 IPIFES PN IS BPIPIPS IPE B B |
5 3
= ] 3
= 0 :'
Trrrfrrrrrrrrrrrrprroeprrrrrrer i

0 1 2 3 4 5 6
Time (s)

~

Figure: State-space diagram and control for the deterministic system

A. Nabi, M. Mirzadeh, F. Gibou, and J. Moehlis. Minimum energy desynchronizing control for coupled neurons.
Journal of Computational Neuroscience, 34:259-271, 2013
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Optimal Control for Stochastic Neural Oscillators Model

Model Overview

State-space Diagram for Stochastic System
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Figure: State space diagram for D = 15 without control input
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Optimization Problem

Optimal Control for Stochastic Neural Oscillators

Optimization Problem

Control Objective

Control Objective:
Find the energy-optimal control law to steer the system to (V,,, n,;) within

time [0, T.q) While minimizing the following cost function:

T(z,u(t)) = /0 "UU2(t) dt + 1q(2(Tona),

where:
@ u(t): Control input, bounded by |u| < umax.
@ vq(z(Tena)): Penalizes the deviation from the desired final state,
representing the final-time penalty for being far from the phaseless

set.
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Optimal Control for Stochastic Neural Oscillators Optimization Problem

Optimization Problem

Hamilton-Jacobi-Bellman Equation

The stochastic cost-to-go function, V(z, 7), represents the minimum
expected cost to reach the target state while satisfying control constraints:

Cost-to-Go Function

u(-)

Ty
V(z,7) = minE [/ u?(t) dt + vq(2(Ty)) | ,

subject to the control constraint |u(t)| < umax-

This function satisfies the stochastic Hamilton-Jacobi-Bellman equation:

0
LV min  H(z,VV) + DAV,
87— ‘ulfumax
where:
@ H(z,VV) is the deterministic Hamiltonian.

@ DAV represents the diffusion term, with A being the Laplacian
operator.
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Optimal Control for Stochastic Neural Oscillators Optimization Problem

Optimization Problem

Hamiltonian and Optimal Control

Hamiltonian
The Hamiltonian governing the system is given by:

H(z, VV,u) = u® + VV(2(t),t) (F(2(t)) + Bu(t)),

where F(z(t)) and B represent the system dynamics and control input
coefficients, respectively.

The optimal control law is derived from the Hamiltonian and is given by:

1
u*(t) _ _Q.T(V:p |V:r| < 2K umax
=sign(Vy)umax [Vl > 2K umax

where vV, = Y.
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Stochastic HJB Equation

To solve the optimal control problem, we address the stochastic HJB
equation:

Stochastic HJB Equation

oV D 92y
B T pulin V)t e =0,

with a terminal cost defined as:

Terminal Condition

_(z=p? | wovp0?
V(Z(TEHd)vTend) =7 (1 = @ ( o o3 )) ,

Key considerations:
@ The problem is a terminal value problem provided by the end-point
cost V( ( end) Tend)'
@ The equation must be solved backward in time from T,,,4 to ¢t = 0.
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Convergence Criteria for BSPDEs

Theorem (Barles-Souganidis Framework)

For a Backward Stochastic Partial Differential Equation (BSPDE), numerical
methods must satisfy the following properties to guarantee convergence to the
viscosity solution:

@ Monotonicity: Ensures a discrete maximum principle, preventing
instability.

© Consistency: The numerical method must accurately approximate the
BSPDE as the grid spacing tends to zero.

© Stability: Maintains bounded numerical solutions over time.
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Proposed Method

We employ Hamilton-Jacobi (H)) solvers leveraging advanced numerical
techniques.

First-order Term:
@ Weighted Essentially Non-Oscillatory (WENO) for VV

@ Local Lax-Friedrichs (LLF) for numerical Hamiltonian (#) which is
needed for nonlinear H

Second-order Term:
@ Backward Time Central Space (BTCS) for V2V

Time Integration:
@ Total Variation Diminishing Runge-Kutta (TVD-RK) for time integration
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Sequential Operator Splitting Method

Operator Splitting Concept: For a differential equation where the local
time derivative equals the sum of several operators, the operator splitting
method allows us to treat each spatial operator separately, solving each
corresponding sub-problem individually.

Abstract Cauchy Problem
Consider the Cauchy problem on Banach space X:

4yut) = (A+ B)u(t), t>0
u(0) = ug

where A, B are densely defined, linear, closed operators with D(A) N D(B)
dense in X
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Sequential Operator Splitting Method

Sub-Problem Structure
For ¢t € [(k — 1)h, kh] with £ € N and w1, (0) = ug, Solve:

Laua(t) = Aua(t), wa((k = D)R) = (k= 1))
%UB(t) :BUB(t), ’U,B((kfl)h) :"U,A(kh)

Set usPl’h(kh) = up(kh)

Split Solution Form
The numerical solution takes the form:
uspl,n(t) = (F(h))"uo

forallug e Dandn e Nwithh =L
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Sequential Operator Splitting Method

IMEX Methods: Suitable combinations of implicit and explicit schemes for
PDEs with terms of different nature.

PDE Setting

Start with PDE:

{ut(x’t) = f(x,u(x,t))
U(ZE,O) = UO("E)

Splitinto f = fi + fo, yielding system £U = FyU + U

Numerical Approximations

For each equation u; = fx(u), k =1,2:

Explicit Euler: u™ ! = 4¢(u™) = u™ + hfy(u™)
Implicit Euler: "™ = ¢ (u") = u™ + hfy(u™ )
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Application to PDEs

IMEX Implementation

Semi-Discrete System
After splitting f = f1 + fo:

@ f1: diffusion term (requires implicit treatment)

@ f>: nonlinear term (suitable for explicit integration)
Examples: convection-diffusion, reaction-diffusion problems

Linear one-step scheme combining methods:

uth = g (u) = g o g5 (u") = u” + h(fi(u" ) + fo(u"))

For convergence analysis, see Ascher et al. (1997)
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods

Algorithm Overview

Algorithm Steps

@ Initialize with the terminal cost V(z, Tv.,.4)

© Solve the Hamiltonian term:
e Compute gradients using WENO scheme
e Evaluate the Hamiltonian with LLF method
e Outputis V*(z, Tena — At)
© Solve the diffusion term:
@ Use the computed V*(z, Tena — At)
o Apply BTCS implicit scheme
e Outputis V(z, Tena — At)
© Time integration stage:
@ Repeat steps 2 and 3 for each stage of the TVDRK

@ Repeat steps 2,3 and 4 until t =0
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Numerical Methods
Model Setup

Single Neuron Model

After computing the value function, we integrate the stochastic ODE:

V = fy(V,n) +n(t) + u(t)

where noise term n(t) = vV2DN(0,1)

Simulation Parameters
@ Time horizon: T,,q = 7ms
@ Spatial grid: 320 x 320 uniform grid
@ Control bound: u,q = 10 pA/uF
@ Honeycutt's second-order method for SDE integration
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Optimal Control for Stochastic Neural Oscillators Numerical Methods

Numerical Methods
Model Setup

Single Neuron Model

After computing the value function, we integrate the stochastic ODE:

V = fr(V,n) +n(t) + u(t)

where noise term 7(t) = vV2DN(0,1)

Simulation Parameters:
@ Time horizon: T, = 7ms
@ Spatial grid: 320 x 320 uniform grid
@ Control bound: w4, = 10 pA/uF
@ SDE Integration: Honeycutt's second-order method
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Numerical Methods

Optimal Control Computation

Control Computation Strategies:

u*(t):
Stochastic value function on stochastic trajectories
Energy-optimal for specific noise realization

a*(t):
Stochastic value function on deterministic trajectories
Approximates ensemble average behavior

ug(t):
Deterministic value function on stochastic trajectories
Applies noise-free control to noisy system

ug(t):
Deterministic value function on deterministic trajectories
Classical approach (Nabi et al., 2013)
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level

Effects of Noise on System Dynamics
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Figure: Cost-to-go function V for various noise levels D. For small D, V is steeper
and approaches zero, while as D increases, V rises with a less steep slope,
indicating noise influence on the dynamics
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level

Effects of Noise on System Dynamics
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Figure: Optimal control input «* for various noise levels D. The control input
becomes more pronounced as D increases, reflecting system dynamics under
varying noise.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Single-Neuron Level

Single Realization of Noise
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Figure: Stochastic control inputs and stochastic trajectories
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Results for Single-Neuron Level

Stochastic Value Function on Deterministic Trajectories
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Figure: Control inputs derived from the stochastic value function on deterministic
trajectories.
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Results for Single-Neuron Level

Comparison of Energy Consumption Across Different Noise Levels

D=05 —

Figure' Control inputs and energy consumption with expected value integrals,
E[[ u*(t)], based on 10,000 Monte Carlo simulations.
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Results for Population Level
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Figure: Stochastic control for D = 15.0, « = 0.25, N = 100 neurons: (top) without
control, (second) with control, (third) input, (bottom) spike raster.
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Optimal Control for Stochastic Neural Oscillators Results

Results for Population Level

Realizations for D = 15, o;; = 0.25
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Figure: Individual realizations and mean trajectories for stochastic (top) and
deterministic (bottom) optimal control at D = 15.
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Results for Population Level

Cumulative Energy Expenditure Comparison
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Figure: Cumulative energy expenditure for deterministic (blue) and stochastic (red)
control across different noise intensities D and coupling strengths a.
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Robustness to Network Properties

Energy Distribution for Control Strategies
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Figure: Accumulated energy expenditure for deterministic (blue) and stochastic
(red) control across different noise levels D and coupling strengths «. The boxes

show the distribution of [**[u*(¢)]?dt for 100 noise realizations.
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Robustness to Network Properties
Neural Network Behavior Under Varying Coupling Strength
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Figure: Network behavior with active event-based control for D = 10 and N = 100
neurons. Panels show different coupling strength conditions: (1) uniform « = 0.20,
(2) random distribution, and (3) 20% zeroed coupling strengths. Dotted gray traces
represent mean voltage, with control activation indicated by horizontal dotted
lines.
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Robustness to Network Properties

Cumulative Energy Expenditure

Robustness to Network Properties
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Figure: Energy expenditure across coupling scenarios and noise levels. Plots show
[Tu*(t)]*dt averaged over 100 realizations for varying D and a. Blue:
Homogeneous; green: Heterogeneous; red: Sparse Heterogeneous
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Robustness to Network Properties

Robustness of Control Duration Across Coupling Scenarios
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Figure: Control duration distribution across coupling scenarios and noise levels.
Plot shows control time durations over 100 realizations for varying D and a. Blue:
Homogeneous; green: Heterogeneous; red: Sparse Heterogeneous

Faranak Rajabi (UCSB) Candidacy Talk 12/05/2024 36/68



Optimal Control for Stochastic Neural Oscillators Robustness to Network Properties

Robustness to Network Properties

Control Duration Across Coupling Scenarios

Homogeneous Heterogeneous Sparse Heterogeneous
(D, &) E[f @*(t)dt] Control E[[ @*(t)dt] Control E[f @*(t)dt] Control
Time (ms) Time (ms) Time (ms)
(0.5,0.05)  752.97 28.35 729.17 27.54 546.85 20.58
(1.0,0.10)  1540.44 58.00 1548.44 58.26 1048.92 39.52
(5.0,0.15)  1895.18 77.64 1918.11 78.78 754.88 30.94
(10.0,0.20) 2636.17 126.76 2619.58 125.64 646.08 31.00
(15.0,0.25) 3815.53 213.98 3813.70 213.66 1012.22 56.52

Table: Energy consumption E[[ @ (t)dt] and control duration for N = 100 coupled
neurons with event-based control over 425 ms. Network types: Homogeneous,
Heterogeneous, Sparse Heterogeneous. Averaged over 100 noise realizations.
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Conclusion

Summary of Findings and Key Results

Summary of Findings:
@ Energy-optimal control for phase resetting of stochastic neural
oscillators, generalizing earlier work on deterministic oscillators.

@ Development of a nonlinear second-order monotone scheme solver
for BSPDEs applied to the stochastic HJB equation using level set
methods.

@ Event-based feedback control effectively desynchronizes neural
oscillators, activated when voltage exceeds a threshold.

Key Results:

@ Stochastic control outperforms deterministic methods in energy
efficiency, particularly in high-noise environments.

@ Achieved energy savings of up to 32% for higher noise levels (D = 15).

@ Demonstrated robustness to variations in neuronal coupling
strengths, ensuring effectiveness in non-uniform neural networks.
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Conclusion

Implications and Future Directions
Implications and Broader Applications:

@ Potential to extend battery life of DBS devices for Parkinson’s disease
treatment.

@ Improved energy efficiency and robustness in heterogeneous neural
networks.

@ Applicability to other fields, such as robotics, aerospace, and finance.

@ Revisiting studies on seizure-like bursting and cardiac arrhythmias
with noise integration.

Future Research Directions:
@ Developing adaptive DBS protocols that account for stochastic neural
dynamics.
@ Investigating long-term effects on neural plasticity and network
reorganization.
@ Conducting comparative clinical studies to validate real-world
benefits of stochastic control strategies.
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Ongoing and Future Work

Proposed Research Directions
Proposed Research Directions:

@ Preparing an in-proceedings paper for the Journal of Computer Physics
Communications, featuring a software manual for a 2D nonlinear PDE
solver. This solver addresses a variety of deterministic and stochastic
Hamilton-Jacobi equations and aims to serve the broader research
community.

@ Developing a machine learning-based, data-driven approach for
adaptive Deep Brain Stimulation (DBS) to enhance therapeutic
outcomes in neurological disorders.

@ Expanding the software package to solve higher-dimensional
Hamilton-Jacobi equations, up to 4D, with robust capabilities for both
stochastic and deterministic cases.

@ Modeling a 4D coupled neuron system to explore complex neural
dynamics under stochastic influences and their control mechanisms.
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Connecting the Dots
From Neural Oscillators to Protein Aggregation

Previous Work: Stochastic PDEs

@ Focus on nonlinear optimization and control
@ Developed robust numerical methods

@ Solved complex stochastic equations

@ Fixed computational domains

New Challenge: Free Boundary Problem

@ Moving boundaries (protein aggregates)
@ Level-set representation

@ Multi-scale physics

@ Complex geometries
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Building on Our Foundation

Our computational expertise in:
@ Numerical methods for nonlinear PDEs
@ High-performance computing
@ Multi-scale modeling

provides the perfect foundation for tackling free boundary problems in
protein aggregation.
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Protein Aggregation
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Protein Aggregation Motivation and Background

Motivation and Background

Protein Aggregation in Biotherapeutics

Protein-based Therapeutics

@ Monoclonal antibodies (mAb) are a major class of biotherapeutics.

@ Challenges arise at high concentrations:

@ Multi-body interactions and crowding effects
@ Increased viscosity and instability
e Conformational and colloidal instability

@ Stable high-concentration formulations are crucial for improving
efficacy and patient outcomes.

Understanding Aggregation and Morphology

@ Protein aggregation accelerates at high concentrations, leading to:

o Irreversible aggregation, limiting shelf life
@ Increased viscosity complicating formulation and drug delivery
@ Immune responses due to high molecular weight aggregates

@ Understanding the aggregation-morphology relationship is key to
predicting long-term stability.
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Protein Aggregation Motivation and Background

Protein Aggregation

Computational Models

Why Computational Models?
They are advantageous for the early development of biotherapeutics.

@ Limited material availability
@ Need to explore many formulation conditions

Main Challenge?
@ Long-term stability prediction arising in high concentration

formulations
@ Multi-scale nature of aggregation:
@ Spatial scales: monomers to large aggregates
e Time scales: microseconds to months
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Protein Aggregation

Protein Aggregation

Motivation and Background

Existing Computational Models

Kinetic Rate Models

Describes protein aggregation
through population balance
equations, tracking the evolution
of mass fractions over time.

Key Features:

@ Rate equations for:

@ Nucleation
e Growth
e Condensation

@ Statistical averaging of bulk
properties

@ Efficient for long timescales

Faranak Rajabi (UCSB)

Candidacy Talk

Molecular Dynamics

Simulates protein aggregation by
solving Newton's equations of
motion for individual particles at
atomic resolution.

Key Features:
@ Force fields include:
@ Bonded interactions
@ Non-bonded forces
@ Solvent effects
@ Detailed molecular
trajectories

@ Limited to short timescales

V.
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Motivation and Background

Limitations of Existing Computational Models

Kinetic Models

Advantages:

@ Long timescale
coverage

@ Large systems

@ Computationally

efficient
Limitations:

@ Lack spatial
resolution

@ Miss
morphological
details

@ No local
interactions

Our Approach

Bridging the Two
Models!
Key Features:
@ Multi-scale
coupling
@ Level-set
representation
@ Spatial resolution
@ Morphological
details
@ Long-range
physics
o Efficient
computation

Molecular Dynamics

Advantages:
@ High spatial
resolution
@ Atomic precision

@ Captures solvent

effects
Limitations:

@ Limited
timescales

@ High
computational
cost

@ Small system
sizes

Faranak Rajabi (UCSB)
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Protein Aggregation

Protein Aggregation Process

The protein aggregation process has two main phases:
@ Nucleation
© Growth

@ Monomer addition
e Polymerization
@ Condensation

These processes are described by rate equations developed by Roberts et
al (2009).

Y. Li and C.J. Roberts. Lumry-eyring nucleated-polymerization model of protein aggregation kinetics. 2. competing growth via condensation and chain polymerization.

The Journal of Physical Chemistry B, 113(19):7020-7032, 2009

Faranak Rajabi (UCSB) Candidacy Talk 12/05/2024 48/68



Protein Aggregation Protein Aggregation Physics

Protein Aggregation

Kinetic Model for Protein Aggregation

The kinetic model describes the following three main components:
@ Monomer fraction (m)

Co: Initial monomer concentration.
N: Native monomers.

I: Intermediate state monomers.
U: Unfolded state monomers.

© Aggregate fraction of size z (a,).

© Aggregate fraction of larger sizes (a;):

e Wherez <i<n’.
@ n*: Size at which precipitation occurs (insoluble aggregate).
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Protein Aggregation

Kinetic Model
1. Monomer Depletion

dm z 5
o —zm”® — 0fgmm’o

@ —zm®: Nucleation phase.

) —6ﬁgnm5o: Growth phase (monomer addition and polymerization).
2. Formation of Aggregates of Size «

*—1

da, "\

T; =m" — Bgnazmts - ﬁcgﬁgnaz (Hz,xam + Z "{m,jaj)
j=x

@ m®: Formation due to nucleation.
® —fB,na,m’: Growth phase (monomer addition).
@ —f.404n: Condensation mechanism.
3. Formation of Larger Aggregates (z < i < n*)
dai -
==

Bgn(ai—é - ai)m5

*
n"—1
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Protein Aggregation

Kinetic Model: Understanding «; ;

Kk ; represents how easily/quickly aggregates combine

Collision Rates Capture Rates
How often aggregates bump into Likelihood of sticking after collision:
each other: @ Collision cross section
@ Transport mechanisms e Binding affinities
(diffusion)

@ Inter-molecular interactions
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Protein Aggregation

Kinetic Model: Understanding «; ;

Collision Forces
Long-range:

@ Electrostatic interactions

@ Hydrodynamic interactions
Short-range:

@ Van der Waals forces

@ Brownian motion

Faranak Rajabi (UCSB)

Capture Forces
Short-range only:

@ Hydrogen bonding

@ Hydrophobic interactions
@ Binding site interactions

@ Van der Waals forces

@ Short-range electrostatic

Candidacy Talk 12/05/2024
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Protein Aggregation

Conceptual Schematic

Protein
Aggregate
Transport
KA \
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5! lon Transport
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Non- Bulk Velocity
ionic
Surfactant Surface Tension

Figure: (Left) Physical interactions during protein aggregation. (Right) The different
stages of protein aggregation driven by all the physical interactions in the solution
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Electrokinetics

Protein Aggregation Physics

1. Conformational Transition of
Folding-Competent Monomers

2. Reversible Association of R
Monomers (Pre-Nucleation)

Electrostatics Y
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3. Nucleation including
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4. Aggregation Growth via
Monomer Addition
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5. Growth via Condensation
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dynamics xsjen®
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Continuum Model
The Uniform Density Model for Epitaxy

What is Epitaxial Growth?
Epitaxial growth involves depositing adatoms (diffusing atoms) onto a
substrate, where they diffuse, nucleate, and aggregate to form ordered

atomic layers.

The Uniform Density Model:
Caflisch et al. introduced this model to simulate epitaxial growth, focusing

on the interaction between nucleation, adatom density, and morphology
evolution.

Key Concepts:
@ Islands form as circular regions and grow until coalescence begins.
@ Island boundaries evolve based on adatom density p(t) and
deposition coverage.
@ Steady-state shapes depend on the attachment rate A(9).
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Continuum Model

The Uniform Density Model for Epitaxy
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Figure: Island morphology at various coverages: (a) 10%, (b) 50%, (c) 100%, and (d)
130%.

R. E. Caflisch, M. . Gyure, N. Papanicolaou, W. E. Prachatka, and D. D. Vvedensky. Kinetic monte carlo simulation of epitaxial growth.
Physical Review E, 59(6):6879-6887, 1999
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Continuum Model

Inspired by the Island Dynamics Model for Epitaxy

Model Relevance:

Our approach is inspired by Caflisch et al.'s Island Dynamics Model (IDM)
for epitaxial growth Caflisch et al. (1999), which simulates island
formation, growth, and coalescence based on adatom density.

Key Insights from IDM:
@ Models island growth as a free boundary problem.

@ Bridges microscopic atomic movement and macroscopic elastic
effects.

@ Influences our modeling of aggregation and morphology evolution.
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Continuum Model

Model Overview

Core Concept: Adding spatial resolution to protein aggregation kinetic
models via a continuum representation of species and to include the
two-way coupling of long and short range interactions through the design
of effective boundary conditions

Level-set Representation ¢(x,t):
@ Tracks aggregate boundaries as a free surface problem
@ Evolves with monomer flux at the surface
Domains:
@ O : Aggregates
@ O7: Outside aggregates
@ I';: Aggregate surface

Density Evolution:
dng

dt

o _

T V- (D(x)Vp) —x
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Continuum Model

Physical Processes

1. Nucleation:
@ Stochastic or deterministic nucleation sites.

@ Rate:
dna _ () ()
dt (p(0))*—1
2. Growth Mechanisms:

@ Surface flux (monomer addition):

/06 - pgq
(p(0))°~1

@ Robin boundary condition with surface energy:

DVp-n=-§

Vp-n+ap’ =apl,
3. Level-set Evolution:

9¢

a_H,.v(b:;(S(t—tn)é(x—xn)
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Continuum Model

Multi-Physics Integration

1. Hydrodynamics:
@ Incompressible Stokes flow equations:

V-v=0
uV3v —VP+pf =0

2. Electrostatics:
@ Poisson-Boltzmann equation:

V- (V) = —kZezp — K2e(2qpcqp — 2_c_)

3. Coupled Transport:
@ Species conservation with electrostatics.
@ lon transport and surfactant effects on surface tension.
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Continuum Model

Conceptual Schematic

Surface binding affinities Level-set representation
as boundary conditions Monomer field of an aggregate

Monomers forming a nucleus
]

\ &8
/
/ 1’1 Level-set i tati
Flux of monomers eve -;:;:5;13:5151 ation
contributes to
aggregate growth
(a) (b)

Figure: Aggregates are represented by a level-set function that evolves according to the
flux of monomers to its interface. Nucleations generate new instances of the level-set
function. Surface affinities and long-range interactions are readily included through
boundary conditions and by solving partial differential equations in irregular domains
under the continuum assumption.

Faranak Rajabi (UCSB) Candidacy Talk 12/05/2024 60/68



Protein Aggregation Primarily Results

Preliminary Results

Poisson Equation Solver

Bochkov et al. (2019) solved Poisson-type equations on irregular domains
with Robin boundary conditions using two finite volume schemes.
Consider the PDE on domain 2 C R™ (n = 2 or 3) with 99 = U,]szl I',, where
I', are smooth subdomains:

Governing Equation

@ r: spatial coordinates

@ u(r): diffusion coefficient
@ k(r): reaction coefficient
@ f(r): source term

D. Bochkov and F. Gibou. Solving poisson-type equations with robin boundary conditions on piecewise smooth interfaces.
Journal of Computational Physics, 376:1156-1198, 2019
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Preliminary Results

Poisson Equation Solver

The boundary conditions on 9Q = ngl ', are given by:

Boundary Condition

where:
@ pis the subdomain index,
@ N is the number of smooth C? subdomains,
@ o, (r) is the boundary coefficient, and
@ g,(r) is the boundary function.
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Preliminary Results

Single Protein with Two Patches

We consider a compound domain that is the union of two disks with radii
1
To = 57"1.

The test function:
ut =2log((z+0.8y)2 +z— 0.7y +4) — 3
u- =0
Wesetaspy=1and k =0:
—uV2u(r) = 0.
The Robin boundary conditions:

ou , a =1, on Disk;,
L +au=g, with a=
n

ag = sin(z + y) cos(x — y), on Disks.
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Preliminary Results

All Subplots

# (Level Set Function) Numerical Solution Exact Solution

1
o8 08
04 & 07
2 06
0s
0 > 0
04
02
03
04 03 .
06 01
1 ]
105 o 05 o1
x

Solution in Pos/Neg Domains

1 1
0s
08 i
05 B
0
06
0s
> 0
04
04
03
03
02 02
01
0 1 0
1 a5 0 05 1
x

Figure: Visualization of the level-set function, numerical and exact solutions, and
error contours for both positive and negative domains. The plot shows how the
solution behaves across the entire domain, with clear separation of regions.
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Preliminary Results

Single Protein with Two Patches

[y

Figure: A comparison of the numerical solution with the exact solution. The
semi-transparent plane interface highlights areas where the numerical solution
approximates the exact solution, particularly near critical regions like
discontinuities or gradients.
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Preliminary Results

Single Protein with Two Patches

Solution Error Convergence Gradient Error Convergence
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Figure: Convergence analysis showing the accuracy of the numerical method as a
function of grid resolution. The plot demonstrates how the error decreases,
reflecting the reliability of the numerical solution as the grid is refined.
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Ongoing and Future Work

Proposed Research Direction

Design and implementation of computational model:
@ Monomer and aggregate evolution modeling, including nucleation.
© Represent surface affinities through boundary conditions.
© Incorporate long-range interactions.

Validation:
@ Validate aggregation and cluster size distribution.
© Validate short-time diffusivity predictions.
© Validate viscosity measurements.
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